Ligand-DNA interaction in a nanocage of reverse micelle.
نویسندگان
چکیده
We have studied intercalation of ethidium bromide (EB) to genomic DNA encapsulated in a nanospace of an anionic AOT reverse micelle (RM). Circular dichroism (CD) study on the DNA in the RM reveals its condensed form. Here, we have used temporal decay-associated spectra (DAS) and time-resolved area normalized emission spectral (TRANES) techniques to investigate EB-binding to condensed DNA because the interference of emission from unbound EB in the RM makes conventional steady state and picosecond resolved fluorescence spectroscopic techniques challenging. The binding affinity of the ligand EB with the DNA in the RM is found to increase with the size of the RM, reflecting the effect of lessening of DNA condensation on the binding affinity. CD spectra of the DNA in the RM with various sizes indicate the structural change of the condensed DNA with reverse micellar size. DAS and TRANES techniques along with dynamic light scattering studies of the EB-DNA complex in the RM further reveal two kinds of binding modes of the ligand with the condensed DNA even in essentially monodispersed RMs. To investigate the role of RM on the ligand binding and secondary structure of the DNA, we have also studied complexation of EB with two synthetic self-complimentary oligonucleotides of sequences (CGCAAATTTGCG)2 and (CGCGCGCGCGCG)2 in the RM.
منابع مشابه
Synthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction
The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So, we report that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L) using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...
متن کاملA spectroscopic study on Calf thymus DNA binding properties of nickel (II) complex with imidazole derivatives of 1,10-phenanthroline ligand
In this study, a nickel (II) complex with 1,10-phenanthroline based ligand, [Ni(FIP)2](OAC)2 (1) with FIP = 2-(Furan-2-yl)-1H-Imidazole[4,5-f][1,10] phenanthroline as ligand was synthesized and characterized by spectroscopic methods and elemental analysis. The interaction of [Ni(FIP)2](OAC)2 (1) with calf-thymus DNA (ct-DNA) was studied by UV-vis absorption, fluorescence spectroscopies and visc...
متن کاملInteraction of Novel Ni2+, Cu2+ and VO2+ Complexes of a Tridentate Schiff Base Ligand with DNA, BSA and their Cytotoxic Activity
In this research, the interaction of [CuL(DMF)], [NiL(DMF)] and [VOL(DMF)] (where L = ((E)-4-((2-amino-5-nitrophenylimino)methyl)benzene-1,3-diol)) complexes derived from tridentate Schiff base ligand with bovine serum albumin (BSA) and DNA was investigated via electronic absorption and fluorescence spectroscopy. The Ultraviolet-Visible (UV-Vis) spectra exhibited an isosbestic point for the com...
متن کاملEffect of Solvents on the Synthesis of SrAl2O4 Nanoparticles by Reverse Micelle Process
Three types of solvents with different polarity (cyclohexane, toluene and benzene), a nonionic surfactant Span 40 were used to prepare strontium aluminate (SrAl2O4) spinel nanoparticles by a reverse micelle method. The structure of SrAl2O4 nanoparticles was characterized by X-ray diffraction (XRD). The morphology and size of the synthesized materials were studied using field emission scanning e...
متن کاملStructural characterization of ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method
In this article, ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method. The various crystalline properties of these nanoparticles such as size, d-spacing, strain, stress, dislocation density and texture coefficient have been calculated with the help of XRD spectrum. The XRD results indicated that the synthesized ZnO and ZnO:Mn nanoparticles have a pure wurtzite (hexagonal phase) struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 83 6 شماره
صفحات -
تاریخ انتشار 2006